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Abstract. A framework for analyzing the Doppler broadening of the X–ray lines in pionic hydrogen is
proposed. It is shown that the kinetic energy distributions at the instant of the np → 1s (n = 2−4)
radiative transitions are related to each other. In order to establish the connection, the collisional processes
for pionic hydrogen scattering from hydrogen atoms and molecules have been calculated in different models.
The proposed method can be used to determine reliably the strong interaction width of the ground state
of pionic hydrogen from the X–ray line profiles measured recently at the Paul–Scherrer–Institut.

PACS. 34.50.-s Scattering of atoms and molecules – 36.10.Gv Mesonic atoms and molecules, hyperonic
atoms and molecules

1 Introduction

Pionic hydrogen atoms (π−p) are formed when negative
pions stop in hydrogen. After the formation in highly ex-
cited states, the π−p atoms deexcite to lower lying levels
through a number of processes (external Auger effect, ra-
diative transitions, and Coulomb deexcitation) until nu-
clear capture or weak decay take place. A good under-
standing of the life history, the so–called atomic cascade,
of pionic hydrogen and other exotic atoms is important
for the planning and interpretation of several experiments
(see Ref. [1] for a review).

In the present paper we will deal with the problem of
extracting the 1s strong interaction width, Γ had

1s , of pio-
nic hydrogen from measured X–ray line profiles. The finite
width of the 1s state is due to π−p decay to π0 + n and
γ + n. Strong interaction also changes the energy of the
1s state shifting it below the QED value. Using Deser type
formulas [2], the strong interaction width and shift are re-
lated to the pion–nucleon scattering lengths which are of
great importance in hadronic physics. A detailed inves-
tigation of the strong energy shift and the pion–nucleon
s–wave scattering lengths is given in reference [3]. The
width was determined at the Paul–Scherrer–Institut (PSI)
and is given by [4]

Γ had
1s = 0.868± 0.040(stat.) ± 0.038(syst.) eV. (1)

The new pionic hydrogen 1s shift/width experiment at
PSI [5] aims at determining Γ had

1s with a precision bet-
ter than 2%. The profiles of the np → 1s X–ray lines in
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π−p are largely given by a convolution of a Lorentzian
with width Γ had

1s and a Doppler broadening profile due
to the non–thermal motion of the π−p atoms in the tar-
get. In order to extract the strong interaction width from
measured X–ray spectra, procedures for subtracting the
Doppler broadening must be applied. The observed line
width for a given transition is related to the 1s strong
interaction width: Γ obs. = (1 + ∆D)Γ had

1s . In the previ-
ous experiment [4], measuring the 3p → 1s transition, the
Doppler broadening correction to the width was estimated
to be ∆D = 12 ± 5%. The uncertainty is responsible for
the systematic error in equation (1). The kinetic motion of
the π−p atoms at the moment of the radiative transitions
depends on the atomic cascade and can be predicted by
ab initio cascade model calculations. Those calculations
are, however, difficult as they require a detailed under-
standing of the acceleration and deceleration mechanisms.
Here an alternative strategy, which depends on more reli-
able cascade model input, will be explored. The proposed
method combines a fitting procedure for the line profiles
with constraints that are based on cross–sections at high
energies (>10 eV) which can be calculated more accu-
rately than those at low energies.

The outline of this paper is as follows: Section 2 dis-
cusses the atomic cascade in pionic hydrogen. A cascade
model dealing only with the evolution of the high energy
components in pionic hydrogen is presented in Section 3.
In Section 4, a framework for analyzing the kinetic en-
ergy distributions which evolve at low n is presented. The
scattering of π−p from atomic and molecular hydrogen is
studied in Section 5. Section 6 presents the results and
Section 7 summarizes the conclusions.
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2 Atomic cascade

Atomic cascade was studied theoretically more than forty
years ago by Leon and Bethe [6]. In their framework, and
later in more refined models [7,8], the rates for the colli-
sional processes were calculated at a fixed kinetic energy
(typically 1 eV) and used to simulate the atomic cascade.
The success of these models derives from the fact they give
a good description of the X–ray yields.

The PSI shift/width experiment [5], however, requires
a more sophisticated approach because it depends on
knowing the kinetic energy distribution at some instant
during the cascade. Beginning with Markushin [9] recent
cascade models take into account the acceleration and de-
celeration of the exotic atoms produced in collisions with
the target atoms. The extended standard cascade model
(ESCM) which was presented in references [10–13] intro-
duces a number of improvements compared to the earlier
models: for example, the scattering from molecular hydro-
gen at high n is calculated in detail [11] as opposed to the
phenomenological treatment in other cascade studies. Our
present understanding of the life history of π−p atoms can
be summarized as follows:
– the π−p atoms are formed by atomic capture by target

protons resulting in a broad distribution in the princi-
pal quantum number around n = 15, see reference [14]
and references therein. The initial kinetic energy is ex-
pected to be similar to that of muonic hydrogen. An
analysis of muonic hydrogen diffusion data suggests
that a median kinetic energy of 0.5 eV after formation
is realistic [12];

– the deexcitation at n > 8 takes place mainly through
the process [11]

(π−p)n + H2 →
{

(π−p)n′ + H∗
2

(π−p)n′ + H + H n′ < n . (2)

Most π−p atoms will accelerate to energies of a few
electron volts during this stage;

– in the intermediate part of the cascade, n = 7−8, the
Auger transitions

(π−p)n + H → (π−p)n′ + p + e−, n′ < n (3)

dominate;
– at n = 2− 6 there are several competing processes: ra-

diative, Auger, and Coulomb transitions, and nuclear
absorption. This makes reliable cascade calculations
difficult as the collisional rates have to be calculated
fairly accurately. Some observables like cascade times
and relative X–ray yields are, however, less sensitive
to uncertainties in the cross–sections.

The highly energetic π−p atoms are created via the
Coulomb deexcitation process [15,16]

(π−p)n + H → (π−p)n′ + H, n′ < n. (4)

The energy released in an n → n′ Coulomb transition is
given by (we use atomic units: e = me = � = 1)

∆En→n′ =
Mred

2

(
1

n′2 − 1
n2

)
(5)

where Mred is the reduced mass of the π−p atom. At low n
only ∆n = 1 transitions are expected to be important so
the highly energetic π−p atoms will have the characteristic
kinetic energies

Tn =
MH

MH + Mπ−p

∆En+1→n (6)

where MH and Mπ−p are the masses of the hydrogen atom
and the π−p atom, respectively. Equation (6) gives the
energies 18 eV, 34 eV, 73 eV, and 209 eV for n = 5, 4, 3,
and 2.

Coulomb deexcitation can also take place via the for-
mation of the molecular states [17]:

(π−p)n + H2 → ({π−pp}∗pee
)∗ (7)

where the three–body system {π−pp}∗ lies below
the (π−p)n + p dissociation limit. The complex,
({π−pp}∗pee)∗, can decay through a number of channels:
Coulomb, Auger, and radiative deexcitation, nuclear ab-
sorption, and back decay.

Both the direct Coulomb deexcitation process (4) and
the formation of molecular states (7) are expected to dom-
inate at low energies but the present quantitative under-
standing of them is not adequate for an ab initio calcu-
lation of the kinetic energy distributions to the precision
required by the pionic hydrogen shift/width experiment.

The existence of high energy components has been es-
tablished in pionic hydrogen in the neutron time–of–flight
experiment [18] and in muonic hydrogen in diffusion ex-
periments [19,20]. In the last case, the collisional quench-
ing of the metastable 2s state resulted in highly energetic
(0.9 keV) (µp)1s atoms which were observed in the time–
of–flight spectrum. The 2s → 1s quenching rate was found
to be 4× 1011 s−1 when normalized to liquid density [19].
We will show in Section 6.1 that an analysis of the np → 1s
X-ray spectra in pionic hydrogen makes it possible to es-
timate Coulomb deexcitation rates here, too.

3 Cascade model for the high energy
components

In 2002 the X–ray spectra of the 4p → 1s, 3p → 1s, and
2p → 1s transitions were measured with good statistics
at PSI at a density corresponding to 10 bar. The Doppler
broadening corrections to the line widths differ in the three
cases because the π−p kinetic energy distributions are not
similar at the different n levels: for example, the 3 →
2 Coulomb transitions give rise to a 209 eV component
which only contributes to the broadening of the 2p →
1s line. The Doppler broadening corrections in the three
spectra are, however, not independent. The π−p atoms
that go through the 4 → 3 Coulomb transition gaining
73 eV in kinetic energy contribute to both the 3p → 1s and
2p → 1s line broadening because they can go through the
3d → 2p radiative transition without losing kinetic energy.
Likewise, the 5 → 4 Coulomb component is expected to
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contribute to all three measured spectra. This observation
is used in the framework described in Section 4.

The proposed method for analyzing the X–ray spectra
treats the low energy population of π−p atoms as a “black
box” whereas cascade calculations are done for the high
energy fraction. We consider the kinetic energy as being
low when molecular target effects are very important and
the collisional processes are difficult to calculate. In the
following we use 10 eV as the kinetic energy separating
the low and high energy components.

An atomic cascade simulation program that only deals
with the high energy/low n part of the cascade has been
written. The program follows the life history of a large
ensemble of π−p atoms starting from an initial distribu-
tion in the quantum numbers n and l and kinetic energy.
The population of the quantum numbers n and l and
the kinetic energy are modified by both collisional and
non–collisional processes. The non–collisional processes
included are radiative deexcitation and nuclear absorp-
tion from the ns states. The most important collisional
processes are

(π−p)nl1 + H →
{

(π−p)nl2 + H (Stark/elastic)
π0(γ) + n + H (Absorption) . (8)

These processes are calculated as described in Section 5.
The external Auger effect

(π−p)n + H → (π−p)n−1 + p + e− (9)

is also included though it is dominated by absorption at
low n. The Auger deexcitation rates have been calculated
in the Born approximation [6] which is in good agree-
ment with the more accurate eikonal approximation for
the range of quantum number n and kinetic energies con-
sidered here [11]. Coulomb deexcitation is expected only
to take place from the low energy component and is, there-
fore, not included in the model.

The π−p atoms lose kinetic energy in the collisions (8).
This is taken into account in the cascade model which uses
the differential cross–sections

dσav
n

dθ
(10)

to calculate the kinetic energy loss in each collision. σav
n de-

notes the l-averaged cross-section with l > 0

σav
n =

1
n2 − 1

n−1∑
l1=1

(2l1 + 1)
n−1∑
l2=1

σnl1→nl2 . (11)

In the case of molecular target the same program is used
with all collisional rates multiplied by the energy depen-
dent ratios σmol

n /2σatom
n where σmol

n and σatom
n are the to-

tal l–averaged Stark cross–sections for scattering on hy-
drogen molecules and atoms, respectively.

With the cascade program it is possible to calculate
the X–ray signal from a given high energy component.
For example, the fractions of the 5 → 4 Coulomb compo-
nent that go through the np → 1s radiative transitions for
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Fig. 1. Schematic view of the kinetic energy distributions at
the instant of the np → 1s radiative transitions in π−p for
n = 2−4. The discrete energy components have the weights
fmn which can be determined by cascade calculations, a fitting
procedure, or a combination of both.

n = 2−4 as well as the kinetic energy distributions at the
instant of the radiative transition are calculated. Though
the initial population at n = 4 with energy 34 eV is not
known, the calculation of the X–ray signal it produces can
be used in a combined analysis of the spectra as discussed
in Section 4.

4 Constraints on the high energy components

In order to extract the 1s strong interaction width from
the X–ray spectra the kinetic energy distribution at the
instant of the radiative transition is needed. As illustrated
in Figure 1, one can divide the distribution into different
components

0 ≤ fmn ≤ 1 (12)

where the subscript indicates the level (m) from which the
radiative transition takes place and the level (n) where
the Coulomb component first appears. For example, f24 is
the 34 eV component in the Kα spectrum. The rest can
be collected into low energy components

f low
n = 1 − fnn+1 − fnn+2 − ... (13)

which contain those surviving atoms that arrive at the
level n with low energies and those which slow down from
higher energies.

A np → 1s X–ray line profile is given by a convolution
of a Lorentzian with the width Γ had

1s and a Doppler pro-
file derived from the kinetic energy distribution. With no
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more knowledge of the atomic cascade than the existence
of the Coulomb components, the determination of Γ had

1s

from the measured line profiles could be carried out by
applying a fitting procedure in which the weights, fmn,
are free parameters (in addition to Γ had

1s ). The problem
with this method is that the π−p atoms may have experi-
enced kinetic energy loss in collisions before they deexcite
radiatively. The high energy components will, therefore, in
general be broad distributions with the maximal kinetic
energy extending up to the characteristic energy given by
equation (6).

Because of this problem, we suggest improving the
method by using the results of the atomic cascade program
presented here. The calculated kinetic energy distributions
should then substitute the single energy components in the
fitting procedure. Another benefit from using the cascade
program is that one can obtain the ratios fm1n/fm2n as
we will show now.

The cascade program does not allow us to calcu-
late fmn because the n + 1 → n Coulomb yield is to be
treated as an unknown. What can be calculated is the
fraction of the π−p atoms in the n + 1 → n Coulomb
component at the level n, which go through the mp → 1s
radiative transition while still having high kinetic energies.
It is given by

gmn =
Y rad

m

Y Coul
n

fmn, m ≤ n (14)

where Y Coul
n denotes the n + 1 → n Coulomb yield and

Y rad
m the mp → 1s radiative yield. At first the relation (14)

does not seem to help us much as it contains the unknown
Y Coul

n and the radiative yield Y rad
m which has been mea-

sured with a statistical uncertainty of 20–30% for Kγ and
10–20% for Kα and Kβ [21]. The situation improves when
one considers the ratio

gm1n

gm2n
=

Y rad
m1

Y rad
m2

fm1n

fm2n
(15)

where the dependence on Y Coul
n has disappeared and one

only needs to know the X–ray intensity ratios which are
experimentally easier to determine. The ratios fm1n/fm2n

can then be used in the fitting procedure reducing the
number of unknown parameters significantly: for example,
the six free weights in the three kinetic energy distribu-
tions in Figure 1 are reduced to three. The constraints
will make a more precise determination of Γ had

1s possible
as compared to what can be obtained from three indepen-
dent analyses of the spectra.

5 Scattering of pionic hydrogen
from hydrogen

The framework described in Section 4 requires good quan-
titative understanding of the cascade processes at ki-
netic energies higher than 10 eV and principal quantum
numbers n = 2−4. We will show in Section 5.1 that

the semiclassical straight–line–trajectory approximation
of Kodosky and Leon [22], in which the π−p atom is
treated quantum mechanically and assumed to move along
a straight line with constant velocity through the electric
field of the target, is a good approximation to more accu-
rate models. Furthermore, it also applies to the more re-
alistic case of collisions with H2 molecules. It was used by
Cohen and Struensee [23] to study the problem of muonic
helium in the 2s state scattering from D2 at very high
energies. The cross–sections for molecular target are cal-
culated in Section 5.2 and compared to the atomic ones.

5.1 Scattering from hydrogen atoms

In the following, R denotes the vector from the target
hydrogen atom to the centre–of–mass of the π−p atom.
The vector from the proton in π−p atom to the pion is
denoted by r.

Four different models for calculating the cross–sections
of π−p scattering from hydrogen atoms have been studied:

– the fully quantum mechanical close coupling (CC)
model described in reference [10];

– the semiclassical (SC) model of reference [10]. The ra-
dial distance R = |R| is treated as a classical variable;

– the straight–line–trajectory (SLT) approximation of
Kodosky and Leon [22]. The inter–atomic vector R
is a classical variable;

– the fixed field (FF) approximation.

In reference [10] a close coupling model was used to cal-
culate cross–sections for the Stark and absorption pro-
cesses (8). In this model π−p wave function is expanded
into the set of n2 Coulomb eigenstates with the same quan-
tum number n. The S–matrix is obtained after solving
the radial Schrödinger equation for each partial wave. As
shown in reference [10], a partial decoupling of the n2 cou-
pled second order differential equations is possible because
of parity conservation.

In the kinetic energy range considered here (>10 eV)
many partial waves contribute to the cross–sections (8)
and the energy splitting within each atomic level is small
compared to the collision energy. Under these circum-
stances the SC model of reference [10] is a good approx-
imation. In this model the radial distance R = R(t) is a
classical variable while the rest of the system consisting
of five variables (θ, φ, and r) is described quantum me-
chanically. The time dependent Schrödinger equation has
the same symmetries as in the CC model but the cou-
pled equations are of first order making numerical solu-
tions easier to obtain. A similar model has been used by
Sakamoto (see [24] and references therein) to study other
scattering problems.

One can go one step further and also treat the an-
gular coordinates, θ and φ, classically. The collisional
processes are calculated by considering classical trajecto-
ries, R(t), through the electric field, E(R), of the target
atoms. The electric field from a hydrogen atom is given by
E(R) = F (R)R/R where (with electron screening taken



T.S. Jensen: Kinetic energy distributions in pionic hydrogen 15

into account)

F (R) =
1

R2
(1 + 2R + 2R2) exp(−2R). (16)

As both projectile and target are neutral in the present
case, we let the π−p atoms move with constant velocity,
v, along a straight line. This corresponds to the model
of Kodosky and Leon [22]. Reifenröther and Klempt [25]
studied the scattering of pionic hydrogen on hydrogen
atoms using a classical–trajectory model. For the present
problem with the fairly high collision energy, the simpli-
fying assumption of uniform movement is, as we will show
below, adequate. The time dependent Schrödinger equa-
tion is written in matrix form:

i
dA

dt
= (V (R(t)) + ∆E)A(t) (17)

with the initial condition A(−∞) = I. The columns in
A(t) contain the time dependent coefficients for the ex-
pansion of the wave function into the n2 Coulomb states
|nlm〉. The potential, V (R), which is responsible for the
Stark transitions, is an n2 × n2 matrix with elements

〈f |r ·E(R)|i〉 = 〈f |x|i〉Ex + 〈f |y|i〉Ey + 〈f |z|i〉Ez , (18)

where |i〉 and |f〉 represent initial and final states in the
basis |nlm〉. The energy shifts and widths are contained
in the diagonal matrix ∆E. The set of coupled differen-
tial equations (17) is solved for 2000 values of the impact
parameter, b, in the interval 0−4a0. The probability for
the transition i → f (i �= f) for the impact parameter b is
given by

Pi→f (b) = |〈f |A(R(∞))|i〉|2. (19)

The cross–section is obtained by integration over b:

σi→f = 2π

∫ ∞

0

bPi→f (b)db. (20)

The cascade model of Section 3 does not calculate the
population over the magnetic quantum number but uses
only the cross–sections

σnl→nl′ =
1

2l + 1

∑
m,m′

σnlm→nl′m′ . (21)

The fixed field approximation corresponds to the substi-
tution

〈f |r ·E|i〉 → 〈f |z|i〉|E| (22)

i.e. the electric field is assumed to be directed along the
z–axis all through the collision. This approximation has
been popular in the study of Stark transitions in exotic hy-
drogen [6,8] because of the simplifications gained in cases
where the level with quantum number n can be consid-
ered to be degenerate. This is nearly so in the case studied
here because the collision energies are much larger than
the ns shifts and widths (the largest being the 2p − 2s

Table 1. The cross–sections in units of a2
0 for π−p scattering

from hydrogen atoms at the laboratory kinetic energy 73 eV
calculated in the CC model, the SC model, the SLT approxima-
tion, and the FF approximation. The results of the SC model
with the 3s shift and width set to zero (SC0) are shown as well.
In the SLT and the FF approximation the 3s shift and width
were also set to zero.

CC SC SC0 SLT FF

3p → 3s+abs. 0.674 0.671 0.688 0.688 0.771
3p → 3p 1.741 1.729 1.746 – –
3p → 3d 1.547 1.552 1.555 1.544 1.741
3d → 3s+abs. 0.186 0.187 0.185 0.182 0.207
3d → 3p 0.928 0.931 0.933 0.927 1.044
3d → 3d 1.012 0.998 0.998 – –

energy difference of 1.25 eV1). The differential equations
decouple completely after a basis transformation from the
Coulomb states |nlm〉 to the Stark states |nn1m〉, see ref-
erences [6,8], and one is left with a set of first order dif-
ferential equations which can be integrated directly.

Table 1 shows cross–sections for (π−p)n=3 scattering
from hydrogen atoms at the kinetic energy 73 eV. The
models discussed above except the FF approximation are
in good agreement with each other. Absorption can take
place either during the collisions or after Stark transitions
to the 3s state. The distinction is, however, artificial as it
depends on how large one defines the collision zone and it
is not important in the present context (n = 2−4, 10 bar)
because the ns states are so short–lived that they are al-
most completely depleted between the collisions.

Figure 2 shows the energy dependence for the l–
averaged Stark cross–sections

σStark
n = n−2

n−1∑
l=0

(2l + 1)
∑
l′ �=l

σnl→nl′ . (23)

The FF approximation overestimates the cross–sections
by up to 33% (at n = 2 and 220 eV). It generally becomes
better as the kinetic energy decreases: for example, for
the Coulomb component at n = 3 with the kinetic energy
73 eV the Stark cross–section in the FF approximation is
13% above the SLT one. In order to understand the ori-
gin of this effect we calculated the contributions to the
2p → 2s cross–section from different impact parameters
at the kinetic energies 209 eV and 1 eV (Figs. 3 and 4).
The latter was chosen only for clarification purposes: the
2s shift and widths are very important at low energies.
The range of impact parameters which contribute to the
cross–sections can be divided into two parts: small im-
pact parameters where the phases are saturated and large
impact parameters where perturbation theory applies.

1 The 2p − 2s energy difference is largely given by strong
interaction (0.89 eV [4]), first order vacuum polarization
(0.33 eV), and relativity (0.03 eV). Small contributions like
finite size effects and higher order QED corrections are not
included in the calculations.
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Fig. 2. The energy dependence of the Stark cross–sections for
π−p with the principal quantum number n = 2−4 scattering
from hydrogen atoms. The result of the SLT approximation
is shown with solid lines, that of the FF approximation with
dashed lines.
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Fig. 3. The contributions to the cross–section 2p → 2s at
209 eV as a function of the impact parameter. The result of
the SLT model (solid lines) is shown in comparison with that of
the fixed field approximation (dashed lines). The energy shift
and width of the 2s state were set to zero.
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Fig. 4. The contributions to the cross–section 2p → 2s at
1 eV as a function of the impact parameter. The lines are as
in Figure 3.

The share of the cross–sections coming from the pertur-
bative range increases with increasing kinetic energies.

To see why the FF approximation overestimates the
cross–sections in the perturbative range one can compare
the two expressions (18) and (22). As we are interested
in the cross–sections that are summed and averaged over
the magnetic quantum number m, we can without loss of
generality consider a trajectory parallel to the z–axis in
the xz–plane. The electric field component Ey is zero and
the contribution to the phases from Ex will tend to cancel
as this component changes sign during the passage. The
important contribution in the perturbative range to the
phases is, therefore, a term proportional to

∫ ∞

−∞
Ez(R(t))dt. (24)

This term is smaller than the corresponding one in the FF
approximation ∫ ∞

−∞
|E(R(t))|dt (25)

which explains why this approximation overestimates the
cross–sections.

5.2 Scattering from hydrogen molecules

In the following, RA and RB denote the vectors from
each of the protons in the target hydrogen molecule to
the centre–of–mass of the π−p.

The collisional rates in the case of molecular target
differ from those of atomic target due to coherence ef-
fects, electric field cancellation, the geometrical size of the
H2 being smaller than two hydrogen atoms, and an elec-
tronic charge distribution that is not simply a superposi-
tion of hydrogen atom distributions. The coherence effects
are most pronounced in collisions where the π−p trajec-
tory is parallel to the inter–nuclear axis. For impact pa-
rameters in the range where perturbation theory is valid,
constructive interference can double the atomic scattering
amplitudes, thus giving a factor of four in the ratio molec-
ular to atomic cross–sections. While the coherence effects
can enhance the molecular cross–sections above twice the
atomic ones, the partial cancellation of the electric fields
from the two hydrogen atoms in the molecule works in the
other direction.

In order to examine the sensitivity of the cross–sections
to the electronic charge density three different distribu-
tions were applied. First, we used the sum of atomic
1s charge distributions placed around each proton cor-
responding to the electron density

ρI(R) = (1+1/RA) exp(−2RA)+(1+1/RB) exp(−2RB).
(26)

where RA = |RA| and RB = |RB|. The electric field in
this case is a superposition of those of two hydrogen atoms:

E(R) =
RA

RA
F (RA) +

RB

RB
F (RB). (27)
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The second and third charge distributions are derived
from two–center molecular orbitals. First we use the un-
normalized wave function

φII(R) = exp(−λRA) + exp(−λRB) (28)

where the variational parameter λ = 1.1895 minimizes
the energy of the H2 ground state at the inter–nuclear
separation of 1.4a0 [26]. The electron density is given by

ρII(R) =
2|φII(R)|2∫ |φII(R′)|2d3R′ . (29)

A more refined result was obtained by using the Slater
orbitals [27]

χ1s(R) = 2ζ
3/2
1 e−ζ1RY00

χ2s(R) =
2√
3
ζ
5/2
2 Re−ζ2RY00

χ2p0(R) =
2√
3
ζ
5/2
3 Re−ζ3RY10(cos θ) (30)

where θ is the angle relative to the inter–nuclear axis. The
molecular wave function is given by

φIII(R) = a1sφ1s(R) + a2sφ2s(R) + a2p0φ2p0(R) (31)

where

φ1s(R) = χ1s(RA) + χ1s(RB)
φ2s(R) = χ2s(RA) + χ2s(RB)

φ2p0 (R) = χ2p0(RA) − χ2p0(RB). (32)

The variational calculation reported in reference [27] gave
a1s = 0.43262, a2s = 0.12384, a2p0 = 0.02827, ζ1 = 1.378,
ζ2 = 1.176, and ζ3 = 1.820. With this set of parameters
the wave function is normalized to 1 so the electron density
is given by

ρIII(R) = 2|φIII(R)|2 . (33)

The total molecular energy in this case corresponds to
96.51% of the observed value.

Two–dimensional tables for the electric field corre-
sponding to the densities ρII(R) and ρIII(R) were cal-
culated in order to speed up the execution time for the
numerical solution of the differential equations. We chose
500 values for the impact parameter b (measured from
the center of the H2 molecule) in steps of 0.01a0. For each
value of the impact parameter a set of random orientations
of the hydrogen molecule was selected and the matrix A
was calculated as described in Section 5.1. The contribu-
tion to the cross–section from the impact parameter is
then given by the average from the different molecular
orientations. We chose 200, 50, and 20 orientations of the
H2 molecule for n = 2, 3, and 4, respectively. The statis-
tical errors in the total cross–sections are less than 2%.

Figure 5 shows the result for the ratios σmol
n /2σatom

n

which are used by the cascade program described in
Section 3. The molecular effect is smallest when the
atomic charge distribution (26) is used resulting in a ratio
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Fig. 5. The energy dependence of the ratio σmol
n /2σatom

n for
π−p with the principal quantum number n = 2−4 scattering
from hydrogen. The results are shown for the electron densi-
ties ρI (dotted lines), ρII (dashed lines), and ρIII (solid lines).

σmol
n /2σatom

n = 0.8−1.05 in the examined energy range.
The geometric effect of molecular scattering leading to a
reduction of the ratio becomes more pronounced with in-
creasing n. This is not unexpected since the cross–sections
increase with n and become comparable to the geometric
size of the H2. The use of the two more accurate charge
distributions (29) and (33) reduces the ratio significantly
(σmol

n /2σatom
n = 0.65−0.9). Since the results obtained with

one and three Slater orbitals are in good agreement with
each other we expect the convergence to be good.

6 Results

The cross–sections used by the cascade model for atomic
hydrogen target were calculated in the SC model while the
molecular corrections were obtained in the SLT approxi-
mation. The results of the cascade calculations presented
here are calculated with the strong interaction width

Γ had
1s = 0.8 eV (34)

but the dependence on Γ had
1s is very weak at n = 2−4.

This is because the absorption takes place after a Stark
transition to the ns state which, for a realistic range of
Γ had

1s values, decay almost completely before the next col-
lision. As the cross–sections for the nl → ns transitions
are nearly independent of the width at high energies the
cascade at low n ends up being only weakly dependent
on Γ had

1s . The initial state is assumed to be statistically
distributed over the the angular quantum number l.

Figure 6 shows the kinetic energy distribution at the
pressure 10 bar at the instant of the 3p → 1s transition
originating from the 34 eV component at n = 4. The result
is calculated for molecular target with the charge distribu-
tion ρIII(R). Only g34 = 3% of the initial component goes
through this transition with high kinetic energies — most
atoms experience nuclear absorption. The figure shows
that it is sensible to separate the kinetic energy distri-
bution in high and low energy components because those



18 The European Physical Journal D

0 10 20 30 40
Kinetic energy (eV)

0

0.01

0.02

0.03

X
-r

ay
 s

ig
na

l 3
p-

>
1s

Fig. 6. The kinetic energy distribution at 10 bar at the in-
stant of the 3p → 1s transition originating from the 34 eV
component at n = 4. The cascade simulation is based on
107 π−p atoms. The calculation does not take molecular forma-
tion and Coulomb deexcitation into account so the predicted
low energy part shown with dashed bars is not reliable.

Table 2. The calculated results for gmn at 10 bar using both
atomic and molecular target with three different charge distri-
butions. Each cascade simulation is based on 107 events.

Quantity H H2 (ρI) H2 (ρII) H2 (ρIII)

g22 0.540 0.535 0.556 0.556
g23 0.087 0.090 0.107 0.107
g33 0.138 0.144 0.163 0.163
g24 0.0291 0.0345 0.0448 0.0439
g34 0.0188 0.0241 0.0309 0.0301
g44 0.0364 0.0412 0.0484 0.0478

g23/g33 0.627 0.626 0.659 0.659
g24/g34 1.548 1.432 1.450 1.459
g34/g44 0.517 0.585 0.638 0.630

atoms which loose a significant fraction of their initial en-
ergy are likely to loose almost all. The reason for that is
that deceleration becomes more efficient as the energy de-
creases due to the differential cross–sections becoming less
forward–peaked.

The results for the components gmn are given in Ta-
ble 2 for the pressure 10 bar. Taking molecular target ef-
fects into account by using the most accurate charge distri-
bution, ρIII(R), increases all components, gmn, compared
to the atomic case. This is a consequence of the Stark
rates being smaller for molecular target: the ns states from
which nuclear absorption takes place are populated less
efficiently in this case so more π−p atoms survive and go
through the radiative transitions.

Some of the components are very sensitive to the
molecular effects: g24 and g34 are increased by 51% and
60%, respectively. However, only the ratios are needed in
the analysis described in Section 4. The largest molecular
effect (22%) is found for g34/g44.

The main purpose of the present investigations is to
provide the framework for the determination of the 1s
strong interaction width from the K X–ray spectra. The
fitting procedure described in Section 4 has not been car-

ried out yet so we do not know how sensitive the resulting
value for Γ had

1s will be to, for example, uncertainties in the
cross–sections and the arbitrary choice of 10 eV as sep-
arating high and low energies. The assumption that the
highly π−p atoms are produced with the characteristic en-
ergies given by equation (6) also needs some modification
if Coulomb deexcitation via molecular states is important:
because the states {π−pp}∗ lie below the (π−p)n+p disso-
ciation limit there will be less kinetic energy available after
a Coulomb transition. These issues will be the subject of
careful studies in the future.

6.1 Estimating the Coulomb deexcitation rates

The results obtained by analyzing the X–ray spectra can
be used to improve our understanding of the cascade pro-
cesses. An example of an interesting quantity is (using
Eq. (14))

Y Coul
n−1

Y rad
n f low

n

=
Y rad

n−1

Y rad
n

fn−1n−1

f low
n

1
gn−1n−1

(35)

which can be calculated once the fitting procedure has
yielded the weights f low

n and fn−1n−1. Equation (35) is
the ratio between the Coulomb and the radiative deexci-
tation rates for the low energy component at the level n.
It is theoretically interesting because it can be predicted
without considering the whole atomic cascade but only
the case of low energy π−p atoms with quantum number
n scattering from H2 molecules. By comparing predicted
and measured results for the ratio (35) different models
(for example those including molecular formation) for cal-
culating the collisional processes can be tested.

7 Conclusion

A method for extracting the 1s strong interaction width of
pionic hydrogen from K X–ray spectra has been discussed.
The proposed method combines a fitting procedure for the
weights of the high energy components with cascade model
constraints in different np → 1s spectra. The constraints
are results of cascade calculations for π−p in hydrogen
gas for the high energy components taking into account
nuclear absorption, deceleration, and Stark, Auger, and
radiative transitions. In addition to the cascade calcula-
tions, the X–ray intensity ratios Kα/Kβ/Kγ are needed.

Various frameworks were used to calculate the
cross–sections for the collisional processes. In the rele-
vant energy region (>10 eV), the semiclassical straight–
line trajectory approximation was found to be in good
agreement with the more accurate close coupling model.
The often used fixed field approximation, where the elec-
tric field from the target atom is assumed to be directed
along the z–axis during the collision, is a fair approxima-
tion: it overestimates the cross–sections by up to 33% for
the highest energies.

After the proposed method has been applied success-
fully in determining the weights of the high energy com-
ponents, it is possible to obtain the Coulomb deexcitation
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rates for the low energy components. This could stimulate
new theoretical studies of the Coulomb deexcitation pro-
cess for example regarding the role of molecular formation.

The author would like to thank L. Simons and D. Gotta for
many fruitful and stimulating discussions. This work was sup-
ported by the Swiss National Science Foundation.
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